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SUMMARY

Background
Delayed sepsis, systemic inflammatory response syndrome (SIRS) and
multiorgan failure remain major causes of morbidity and mortality on
intensive care units. One factor thought to be important in the aetiology
of SIRS is failure of the intestinal barrier resulting in bacterial translo-
cation and subsequent sepsis.

Aim
This review summarizes the current knowledge about bacterial translo-
cation and methods to prevent it.

Methods
Relevant studies during 1966–2006 were identified from a literature
search. Factors, which detrimentally affect intestinal barrier function,
are discussed, as are methods that may attenuate bacterial translocation
in the critically ill patient.

Results
Methodological problems in confirming bacterial translocation have
restricted investigations to patients undergoing laparotomy. There are
only limited data available relating to specific interventions that might
preserve intestinal barrier function or limit bacterial translocation in the
intensive care setting. These can be categorized broadly into pre-epithe-
lial, epithelial and post-epithelial interventions.

Conclusions
A better understanding of factors that influence translocation could
result in the implementation of interventions which contribute to
improved patient outcomes. Glutamine supplementation, targeted nutri-
tional intervention, maintaining splanchnic flow, the judicious use of

antibiotics and directed selective gut decontamination regimens hold
some promise of limiting bacterial translocation. Further research is
required.
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INTRODUCTION

The gastrointestinal tract (GIT) has a multitude of

functions other than digestion. The alimentary tract

produces numerous hormones with local and systemic

effects, as well as representing the single largest

immunological organ of the body. The gut also serves

as a barrier against living organisms and antigens

within its lumen; the so-called ‘intestinal barrier func-

tion’.1–4 The fact that luminal contents in the caecum

have a bacterial concentration of the order of 1012

organisms/mL of faeces,5 whilst portal blood, mesen-

teric lymph nodes (MLNs) and indeed tissues one cell

deep to the intact intestinal mucosa are usually sterile,

dramatically illustrates the efficacy of this barrier. This

role of the gut serves to manage luminal antigens,

encouraging the symbiotic relationship between man

and enteric bacteria, while ensuring that the internal

milieu remains sterile. Breakdown or overwhelming of

this barrier may result in the ingress of viable bacteria

and their antigens with the development of sepsis, ini-

tiation of a cytokine mediated systemic inflammatory

response syndrome (SIRS), multiorgan dysfunction

syndrome (MODS), and death. This process is known

as bacterial translocation and describes the so called

‘gut origin of sepsis hypothesis’,6, 7 represented graph-

ically in Figure 1. The role of the gut as the motor of

multiple organ failure may help explain the absence of

a discreet focus of infection in most patients with

delayed SIRS and MODS.8 A better understanding of

the mechanisms involved may delay or prevent the

onset of SIRS and MODS in the critically ill. This

review summarizes the current knowledge on bacterial

translocation and factors which detrimentally affect

intestinal barrier function. Methods of attenuating

bacterial translocation and its ill effects in the inten-

sive care setting are discussed.

SEARCH METHODS

Relevant studies during 1966–2006 were identified

from a Medline, PubMed and Cochrane database

search. Original articles and reviews in all languages

were collated. The authors’ own studies and private

collections, as well as books in print were also used to

identify relevant studies. Search terms included those

of ‘bacterial translocation’, ‘prevention’, ‘human’,

‘intensive care’, ‘critical illness’, ‘enteral nutrition’,

‘parenteral nutrition’, ‘immunonutrition’, ‘glutamine’,

‘sepsis’ and ‘multiple organ failure’.

Level 1 evidence from human studies was conspicu-

ous by its absence. No randomized controlled trials

could be identified specifically addressing the issue of

bacterial translocation and its prevention in humans.
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Figure 1. The gut origin of
sepsis hypothesis, with bacter-
ial translocation as a potential
stimulus for ongoing inflam-
mation.
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Studies presented in this review therefore represent

level 2 to level 4 evidence. Where possible, emphasis

was given to human clinical studies, but trials using

animal or in vitro models have also been included par-

ticularly where little or no human data were available.

BACTERIAL TRANSLOCATION: AN OVERVIEW

The idea that the alimentary tract, teeming with its

own bacterial flora, could represent a source of sepsis

under certain conditions has interested clinicians for

many years. This theory, usually referred to as the ‘gut

origin of sepsis’ hypothesis, is not new. In the late

19th century, the idea evolved that peritonitis could

result from the passage of bacteria from organs adja-

cent to the peritoneal cavity. In Germany this was

referred to as ‘durchwanderungs-peritonitis’, literally

translated as ‘wandering through peritonitis’. In 1891

and 1895, two separate investigators hypothesized that

viable bacteria could pass through the intact gut wall

in vivo.9, 10 It was Berg and Garlington who in 1979

defined this phenomenon as bacterial translocation.11

Translocation is used to describe the passage of

viable resident bacteria from the GIT, across the mu-

cosa, to normally sterile tissues such as the MLNs and

other internal organs.11 The term also applies to the

passage of inert particles and other antigenic macro-

molecules, such as lipopolysaccharide endotoxins and

peptidoglycans, across the intestinal mucosal barrier. It

is usually assumed that the colon, with its much

higher bacterial load, must be the most probable site

of bacterial translocation. It would seem unlikely that

translocation would occur from other parts of the nor-

mally sterile intestinal tract but there is no clinical or

experimental evidence to confirm this.

Whist it is tempting to think that any bacteria or

endotoxin passing through the intestinal barrier might

cause septic complications in the host, there is grow-

ing evidence to suggest that translocation may in fact

be a normal phenomenon. It is possible that transloca-

tion occurs to allow the alimentary tract to be exposed

to and sample antigens within the lumen such that the

gut can mount a controlled local immune response

helping to keep these antigens away from the internal

milieu, a process known as ‘oral tolerance’.12–14 It is

then only when the host’s immune defences are over-

whelmed or otherwise defective that septic complica-

tions arise.

Numerous modifications on the ‘gut origin of sepsis

hypothesis’ have been put forward. Deitch proposed

the ‘three hit model’15. In this model, an initial insult

results in splanchnic hypoperfusion (first hit) with the

gut becoming a major site of proinflammatory factor

production. Resuscitation results in reperfusion which

leads to an ischaemia-reperfusion injury to the intes-

tine (second hit) with a resultant loss of gut barrier

function and an ensuing enhanced gut inflammatory

response, without the need for translocation of

microbes as far as the MLNs or beyond. Once bacteria

or endotoxin cross the mucosal barrier, they can trig-

ger an augmented immune response such that the gut

becomes a proinflammatory organ, releasing chemok-

ines, cytokines and other proinflammatory intermedi-

ates which affect both the local as well as the systemic

immune systems (third hit), finally resulting in SIRS

and MODS.

Another modification of the ‘gut origin of sepsis

hypothesis’ is known as the ‘gut-lymph theory’16, 17

which proposes that macrophages and other immune

cells in the submucosal lymphatics of the gut wall or

the MLNs trap the majority of translocating bacteria.

However, those that survive or the cell wall and pro-

tein components of the dead bacteria (including lipo-

polysaccharides and peptidoglycans) along with the

cytokines and chemokines generated in the gut, travel

via the mesenteric lymphatics to the cysterna chilli,

and via the thoracic duct empty into the left subclavin

vein to reach the right side of the heart. These inflam-

matory products then enter the pulmonary circulation

and activate the alveolar macrophages, and in so

doing contribute to acute lung injury and the progres-

sion to adult respiratory distress syndrome (ARDS) and

MODS. This theory corroborates work published by

Moore et al. who failed to demonstrate bacteria or

endotoxins in portal venous blood of polytrauma

patients.18, 19 However, the mechanisms by which

translocating bacteria, their antigenic components or

cytokines generated in the gut set about causing sepsis

and MODS remains unclear.

METHODOLOGICAL PROBLEMS IN
CONFIRMING BACTERIAL TRANSLOCATION

Luminal bacteria that manage to breach the extrinsic

intestinal barrier defences can cross the mucosal epi-

thelium by taking either the transcellular or the para-

cellular route, or a combination of the two.20, 21 On

entering the laminal propria, most bacteria are des-

troyed by macrophages; however, those that are not

enter the portal venous system and associated solid
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organs, pass to the MLNs or transgress the peritoneal

cavity directly. Confirmation of bacterial translocation

(BT) therefore necessitates the identification of bacteria

in one or more of these sites, making assessment of

bacterial translocation in humans difficult as it neces-

sitates invasive tissue sampling.

In humans, the most reliable method of assessing

bacterial translocation is by culture of MLNs. This

involves the limited sampling of MLNs at the time of

laparotomy using aseptic techniques, and their subse-

quent culture on appropriate media.22, 23 A positive

culture is considered to indicate bacterial transloca-

tion. There are a number of limitations to this tech-

nique. Firstly, it restricts in vivo studies relating to

bacterial translocation to surgical patients undergoing

laparotomy. Studies investigating bacterial transloca-

tion or barrier function in other clinical conditions

have often necessitated extrapolations from animal

models. Secondly, there is an ethical and logistical

limit to the number of lymph nodes that can be safely

sampled in humans. The more extensive sampling

possible in animals has resulted in a major disparity in

the prevalence of translocation between animal and

human studies. Bacterial translocation has been

repeatedly reported to occur in approximately 10–15%

of surgical patients,22–24 while some animal studies

report a prevalence of greater than 90%.25–27

The methodological limitations of confirming trans-

location in humans have major implications to the

understanding of this phenomenon, and particularly so

in the critically ill patient. The effects of conditions

specific to the intensive care setting (such as pro-

longed ventilation and the use of protracted inotropic

support) on the intestinal barrier and subsequent bac-

terial translocation are largely unknown. However,

recent advances in molecular microbiology have

opened new frontiers in identifying bacterial translo-

cation by non-interventional methods. Isolation and

sequencing of DNA fragments belonging to enteric

bacteria from peripheral blood and other body fluids

may yet permit the confirmation of translocation of

enteric organisms without the need for invasive samp-

ling.28–34

It is important to emphasize that the literature is full

of studies using surrogate measures of intestinal bar-

rier function. These include blood cultures with con-

comitant faecal cultures, intestinal immune markers,

bowel scrapings, intestinal permeability measurements,

and the culture of nasogastric aspirates. 35–43 It is felt

that these do not represent level 1 evidence of bacter-

ial translocation, and as such, the findings of such

studies should be interpreted with caution.

FACTORS THAT PREDISPOSE TO
TRANSLOCATION

Factors that influence bacterial translocation are

believed to act on the delicate homeostatic equilibrium

between luminal organisms and the gut barrier, pro-

moting ingress of antigens across the intestinal bar-

rier.44, 45 These factors are thought to include

intestinal obstruction,23, 24, 46–48 jaundice,23, 24, 49–52

inflammatory bowel disease,24, 53, 54 malignancy,55–57

pre-operative total perenteral nutrition (TPN),23 emer-

gency surgery,23 and gastric colonization with micror-

ganisms.23, 40 Much of the evidence to substantiate

these claims is available from animal studies. Further,

the number and complexity of factors that interplay at

the biome-epithelial interface to bring about transloca-

tion makes conclusions regarding factors which are

‘independently’ important for translocation exceed-

ingly difficult. This is compounded by the fact that

most trials investigating translocation have small

cohort sizes, permitting only univariate analysis for

association.

Increased bacterial loads and breakdown of tight

junctions associated with intestinal obstruction are

thought to promote bacterial translocation. First pro-

posed by Deitch et al.,47, 58 intestinal obstruction has

been shown to promote bacterial overgrowth,58 and

disruption of the intestinal epithelium in animal mod-

els,48, 59, 60 resulting in an increased prevalence of

bacterial translocation on univariate analysis.61 These

observations have also been substantiated by some

human studies.23, 24, 46

Jaundice is almost universally believed to promote

translocation in humans. There is a lot of evidence

from in vitro as well as animal studies that this may

indeed be the case.51, 62 Bile and bile salts within the

lumen of the gut are believed to be protect-

ive.52, 63, 64 Ding et al. showed that bacterial translo-

cation was more common in rats whose bile ducts

was ligated, but these changes were not observed in

those receiving bile or bile acids orally.63 Obstructive

jaundice was also shown to impair reticuloendothelial

function in rats,65 with failure of macrophage activa-

tion,66 Kupffer cell function,67 as well as cause ileal

mucosal disruptions,68 disruption of desmosomes and

formation of lateral spaces between enterocytes,69

whilst also disturbing intestinal permeability and
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other aspects of gut barrier function.25 In vitro expo-

sure of enteric bacteria to bile during their growth

was observed to result in bacterial cells with

decreased invasiveness for cultured intestinal epithe-

lial cells.70 Absence of bile from within the lumen of

the gut was also associated with a quantitative

increase in small intestinal microflora as well as dis-

turbance of normal migratory motor complexes.71

This evidence is further substantiated by observations

that many of the ill-effects of jaundice in animals

may be reversed by biliary decompression.72, 73 There

is limited information about the effects of jaundice

on translocation in humans. The few studies available

suggest that there may also be some degree of

association.24, 50

Total perenteral nutrition is generally administered

to patients with non-functioning intestines which can-

not tolerate or absorb enteral nutrition. The associ-

ation of TPN use with bacterial translocation is

impossible to separate from underlying gut fail-

ure.23, 74, 75 Likewise, the association of emergency

surgery is a reflection of the influence the acute

inflammatory response has on the gut barrier func-

tion.23, 76, 77 The complex systemic upset in acute sur-

gical conditions involves relative immunosuppression,

increased intestinal permeability, and paralytic ileus,

which all interplay to cause gut barrier failure.

To date, there is only one published study that

investigated factors independently associated with

bacterial translocation in humans. In this study, Mac-

Fie et al. performed a multivariate analysis on 927

surgical patients to assess factors independently asso-

ciated with bacterial ingress across the intestinal bar-

rier.23 From the large number of variables

investigated, and in agreement with previously pub-

lished literature, intestinal obstruction, jaundice,

inflammatory bowel disease, malignancy, pre-opera-

tive TPN and emergency surgery were all associated

with an increased prevalence of bacterial translocation

on univariate analysis. Following multivariate analy-

sis, however, only emergency surgery and pre-opera-

tive TPN were shown to be independently associated

with translocation (Table 1). Even then, the authors

were of the opinion that as TPN and gut failure are

inextricably linked, and as, to date, there exists no

reliable test to identify patients with intestinal failure,

the enhanced translocation noticed in this group of

patients probably represented little more than underly-

ing gut dysfunction, with TPN representing nothing

more than a confounding factor.

Fong et al. showed that healthy volunteers on TPN

had a higher TNF-a, Cachectin and C reactive protein

levels compared with volunteers on enteral nutrition,

suggesting that TPN and bowel rest modify the meta-

bolic response to endotoxins in humans.78 Further-

more animal experiments confirmed that bacterial

translocation occurred more frequently after truncal

vagotomy than after proximal gastric vagotomy

clearly implying the role of the vagus on gut barrier

dysfunction.79 Hasko and Szabo in 1998 suggested

that the production of TNF-a, interleukin 6, 10, 12 and

chemokine macrophage inflammatory protein 1a are

regulated by transmitters and co-transmitters of the

autonomic nervous system.80 Kevin Tracey in 2002

described the parasympathetic regulation of the

inflammatory response: ‘the cholinergic anti-inflam-

matory pathway’ and demonstrated that efferent vagal

nerve stimulation inhibits proinflammatory cytokine

release and protects against systemic inflammation.81

There is increasing evidence to suggest that vagal sti-

mulation and cholinergic agonists acting via the 7a
nicotinic acetylcholine (7an AChR) receptors block

endothelial cell activation and leukocyte recruitment

during inflammation and improve survival in experi-

mental sepsis.82 Clearly, therefore, a functioning GIT

remains an essential prerequisite for maintaining the

integrity of the immune system and gut barrier func-

tion in critically ill patients. As TPN is primarily

administered to patients with a non-functioning gut, it

is not surprisingly that TPN was independently associ-

ated with gut barrier dysfunction as measured by bac-

terial translocation in surgical patients (Table 1).

MEASURES TO REDUCE BACTERIAL
TRANSLOCATION

Theoretically, bacterial translocation may be modulated

both quantitatively (decreasing the prevalence of trans-

location) and qualitatively (changing the spectrum of

translocating organisms). There is no available ‘level 1’

evidence that can be used to recommend therapeutic

interventions to decrease or somehow modulate bacter-

ial translocation in humans. A number of factors may

be of significance in modulating gut barrier function

and consequently bacterial translocation in clinical

practice. These act at the pre-epithelial, epithelial and

post-epithelial levels. It is recognized that these factors

may act at more than one site, and indeed at more than

one level, but for purposes of clarity have been categor-

ically assigned as summarized in Table 2.
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Pre-epithelial factors

Luminal nutrients

It is widely recognized that early institution of nutri-

tional support is of benefit, particularly in patients

with severe malnutrition83 and patients with prolonged

or severe infirmity.84–87 Not surprisingly, most review-

ers of nutritional support therapy urge the use of ent-

eral (EN) as opposed to parenteral (TPN) feeding.

Parenteral nutrition, it is said, results in mucosal atro-

phy and increased intestinal permeability, which

reflect damage to the intestinal barrier. The popular

belief is that this predisposes to bacterial translocation

and may be one explanation for increased rates of

septic complications observed in some studies investi-

gating TPN.88, 89

A number of assumptions are implicit in these com-

monly held views about TPN. Firstly, that bacterial

translocation occurs more readily if intestinal barrier

function is impaired and is associated with increased

incidences of sepsis. Secondly, that septic morbidity is

proved to be significantly higher in patients receiving

TPN. And thirdly, that the absence of luminal nutrients

as might occur during starvation, malnutrition or TPN

is associated with deleterious consequences to the gut

barrier which predispose to translocation.

There is no evidence to suggest that bacterial trans-

location is reduced by the use of enteral nutrition.89–92

There is no evidence to confirm that short-term TPN is

associated with villus atrophy or significant changes

in intestinal permeability.93 There is no evidence in

humans to support the view that alterations in intesti-

nal barrier function as assessed from changes in

Table 1. Variables independ-
ently associated with bacterial
translocation in surgical
patients

Factor
No. of
patients

Bacterial
translocation (%)

P-value
univariate

P-value
multivariate

All patients 927 130 (14.0)
Age

£70 years 495 60 (12.1) 0.088
>70 years 432 70 (16.2)

Sex
Male 505 62 (12.3) 0.106
Female 422 68 (16.1)

Surgery: mode
Emergency 185 47 (25.4) <0.001 0.001
Elective 742 83 (11.2)

Malignancy
No 384 61 (15.9) 0.180
Yes 543 69 (12.7)

Inflammatory bowel disease
No 834 115 (13.8) 0.530
Yes 93 15 (16.1)

Jaundice
No 872 122 (14.0) 0.843
Yes 55 8 (14.5)

Pre-operative TPN
No 866 115 (13.3) 0.021 0.015
Yes 61 15 (24.6)

Obstruction
No 788 99 (12.6)
Gastric outlet 17 2 (11.8) 0.921
Small bowel 77 16 (20.8) 0.042 0.895
Large bowel 45 13 (28.9) 0.001 0.246

Table reproduced with permission from MacFie J, Reddy BS, Gatt M, Jain PK, Sowdi R,
Mitchell CJ. Bacterial translocation studied in 927 patients. Br J Surg 2006; 93: 87–93.
Copyright British Journal of Surgery Society Ltd. Reproduced with permission. Permis-
sion is granted by John Wiley & Sons Ltd on behalf of the BJSS Ltd.
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mucosal architecture or from alterations in intestinal

permeability will predispose to an increased prevalence

of bacterial translocation.38 Starvation or malnutrition

by themselves do not induce bacterial transloca-

tion.91, 92 Alterations in mucosal architecture or intes-

tinal permeability may indicate certain changes in

intestinal barrier function but do not necessarily

equate with alterations in the prevalence of bacterial

translocation. With the exception of trauma

patients,94, 95 there is no firm evidence that septic

morbidity is increased in patients receiving parenteral

as opposed to enteral nutrition.96

The nature of the nutritional support that should be

provided to critically ill patients should be determined

by their tolerance to enteral nutrition and not by

unfounded fears regarding TPN or unjustified assump-

tions concerning the role of gut barrier function. In

this respect, if TPN is necessary, it should not be with-

held on the wrong assumption that it will promote

bacterial translocation. Indeed, unfounded fears based

on early studies which reported poorer outcomes in

patients receiving TPN may be related to the relative

hyperglycaemia induced by overfeeding associated

with early TPN regimes, as opposed to the intravenous

administration of nutrients itself. 88, 89 More recent

studies with TPN do not confirm these observations.96

Clearly, a functioning GIT remains an essential prere-

quisite for maintaining the integrity of the immune

system and gut barrier function. The precise role of

luminal nutrients when compared with gut failure from

whatever cause cannot be distinguished; however, to

date, there is no evidence that the absence of luminal

nutrients predisposes to bacterial translocation.

Selective gut decontamination

It may be possible to decrease sepsis from enteric bac-

teria by means of selective gut decontamination

(SGD). The emphasis is on the ‘selective’ nature of

instituted regimes, as it is considered important to

diminish the counts of pathogenic Gram–negative

microbes and in particular Enterobacteriaceae in pref-

erence to commensal anaerobic bacteria.97 Selective

decontamination is achieved through the combined

use of oral non-absorbable antibiotics and/or short-

term systemic preparations with microbial surveil-

lance.98 Many different antimicrobial regimes have

been used separately or in combination for this pur-

pose. These include, for example, vancomycin, neomy-

cin, tobramycin, polymyxin E and many others.

Whilst there is strong evidence to suggest that SGD is

effective in reducing both the intestinal bacterial load99

as well as respiratory tract infections in the critically

ill,100, 101 studies to date have shown conflicting results

in relation to the effects on septic complications and

mortality. One possibility for this is the increased free

endotoxin load (and subsequent endotoxin transloca-

tion) associated with the death of so many bacteria.102

Another possibility is that decontamination regimes are

not specific enough to preferentially eliminate patho-

gens, and therefore upset the balance of indigenous

flora in such a way as to diminish the effects of bacterial

antagonism.103 To date, there are no published papers to

indicate that SGD may influence BT; however, the

authors have preliminary unpublished data to suggest

that by combining SGD with bowel preparation and

probiotics, one may indeed influence the spectrum of

translocating organisms by decreasing the prevalence of

translocation of pathogenic Enterobacteriaceae after

bowel mobilization.

Gastric colonization

The proximal GIT contains only a modest number of

microorganisms, comprising mainly acid-tolerant

lactobacilli and streptococci.104 The presence of

enteric organisms or fungi in gastric aspirates (gastric

Table 2. Factors which may affect bacterial translocation

Pre-epithelial Enteral nutrients
Selective bowel decontamination
Gastric colonization
Probiotics and prebiotics

Epithelial Immunonutrients
Glutamine and other gut specific nutrients
Splanchnic blood flow
Exogenous IgA

Post-epithelial Vagus nerve stimulation
Nicotine and cholinergics
Granulocyte colony stimulating factor
Direct haemoperfusion and
haemofiltration (CHF)

Miscellaneous Genomes
Increased intra-abdominal pressures
Melatonin
Octreotide
Lactulose
Growth hormone
Insulin-like growth factor 1
Bowel manipulation
Opiates
Multimodal optimization
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colonization) is abnormal and has been shown to be

associated with an increased prevalence of bacterial

translocation.40 For this reason, positive nasogastric

aspirates may have a role as a surrogate marker of

altered intestinal barrier function.23, 40 Critical illness

is often associated with proximal gut overgrowth with

enteric organisms. These organisms have been linked

to nosocomial infection.8 Indeed the similarity of

organisms identified in septic foci and those cultured

from gastric aspirates suggests that the infecting

organisms are of gut origin. It would seem logical

therefore to adopt measures that discourage bacterial

overgrowth in the proximal gut. This has implications

to the use of acid suppressing medications,105–107

acidified enteral feeding,108 continuous vs. inter-

mittent enteral nutrition,109–111 broad spectrum anti-

biotics112, 113 and a miscellany of other interventions.

Probiotics and prebiotics

Probiotics are defined as live microbial feed supple-

ments that beneficially affect the host by improving

its microbial balance. Prebiotics are non-digestible

foods, mainly plant fibres, consumed and used by gut

bacteria as substrates for fermentation in the lower

GIT. They selectively stimulate the growth and activity

of beneficial strains of bacteria while also directly

benefiting the gut.114, 115 Furthermore, they may help

in promoting gut transit which has been shown to be

a determining factor for bacterial translocation in ani-

mal models.116, 117

The use of probiotics containing Lactobacillus acido-

philus La5, Lactobacillus bulgaricus, Bifidobacterium

lactis BB-12 and Streptococcus thermophilus was

shown to significantly decrease the prevalence of

potentially pathogenic organisms in the upper GIT

although this had no effect on gut barrier function as

assessed by intestinal permeability measurements.118

Epithelial factors

Gut-specific nutrients and Immune enhancing feeds

Numerous immunonutrients, such as glutamine and

arginine, that make claim to enhance immune function

and improved patient outcomes have been investi-

gated. Trials using such feeds have had inconsistent

results.119–129 The largest meta-analyses of its kind to

date involving 26 studies in critically ill patients

showed that study subjects randomized to receive im-

monutrient feeds had reduced risks of developing

infectious complications, intra-abdominal abscesses

(relative risk, 0.26; 95% CI, 0.12 to 0.55), nosocomial

pneumonias (relative risk, 0.54; 95% CI, 0.35–0.84),

and bacteraemias (relative risk, 0.45; 95% CI, 0.38–

0.84), as well as reduced time on mechanical ventila-

tion, reduced time in intensive care, and an overall

reduction in hospital stay.129 Despite these noted

improvements, there was no effect on mortality (relat-

ive risk, 1.10; 95% CI, 0.85–1.42). Further, there were

no convincing effects of immunonutrition on the inci-

dence of ARDS or multiorgan failure. Whether

observed benefits associated with immunonutrition

relate to a decreased prevalence of bacteria transloca-

tion remains unproved.

The most investigated immunonutrient by far is glu-

tamine. Glutamine is a conditionally essential amino

acid130 being increasingly important in catabolic states

such as those found in critical illness. Its gut-specific

effects on the post-absorptive small intestine as well

as the proximal and distal colon are well

known.131, 132 It is a precursor of nucleotide synthesis,

and an essential fuel for rapidly dividing cells inclu-

ding those from the gut epithelium, as well as the

reticuloendothelial and immune systems.130 It is a

major substrate of enterocytes, colonoctes, as well as

the gut-associated lymphoid tissue (GALT).131, 133, 134

It has trophic effects on enterocytes, and as such may

help maintain gut mucosal integrity under conditions

of stress. This has been manifested by decreased intes-

tinal permeability assays associated with glutamine

supplementation in critically ill patient,135 although

the clinical relevance of this test remains unclear. Glu-

tamine has also been hypothesized to attenuate the

motor that drives gut-mediated systemic inflamma-

tion.131 Proposed mechanisms are numerous and there

is mounting experimental evidence that glutamine has

direct tissue protective effects (by virtue of its trophic

properties on enterocytes136 and by enhancing heat

shock protein expression137–141), antioxidant effects

(by up-regulating glutathione levels142, 143), and also

attenuates inducible nitric oxide synthetase expres-

sion.144 Further, glutamine has been shown to attenu-

ate both the gut and systemic elaboration of

proinflammatory cytokines,145–147 it may enhance gut

immunoglobulin A (IgA) concentrations,148, 149 while

also preserving tissue metabolic function and ATP lev-

els,150, 151 and in so doing rendering organs more resi-

lient to stress, shock and ischaemia-reperfusion

injury.152
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Because of these numerous beneficial effects, it is

hardly surprising that glutamine has been pursued by

investigators as one method of attenuating bacterial

translocation, while also negating the negative effects

of enteric bacteria that manage to cross the gut barrier.

There is ample evidence from animal studies to support

this. Salvalaggio et al. were able to show that in a rat

model supplemental glutamine was associated with a

significant reduction in both positive cultures from

distant organs and bacteraemic episodes.153 In humans,

glutamine supplementation has been associated with

amelioration of mucosal atrophy,154 improved healing

of mucosal injury following radiotherapy and chemo-

therapy,155 enhanced gut and systemic immune func-

tion,156, 157 and the direct attenuation of bacterial

translocation and sepsis.158, 159 There is a large litera-

ture base to support the observation that glutamine

administration to selected intensive care patients is

associated with improved outcomes and decreased hos-

pital stays; however, the exact mechanisms responsible

are contentious, and whether these relate to any effects

on bacterial translocation is debatable.

Arginine, a non-essential amino acid, is important

in nitrogen metabolism, the synthesis of polyamine,

and ammonia disposition.130 Arginine undergoes first-

pass metabolism in the splanchnic bed, implying that

the small intestine is an important site of arginine

metabolism. Much of the interest in arginine is related

to its role as a precursor for nitric oxide (NO), which

in turn has a very wide range of metabolic functions.

NO production by the constitutive form of nitric oxide

synthetase has been shown to play a role in maintain-

ing the normal intestinal mucosal barrier160 and is also

a determinant of the host defenses against Giardia

lamblia161–163 in humans. Arginine whilst being a

non-essential amino acids in the healthy state, is

hypothesized to be a conditionally essential nutrients

in the severely ill catabolic patient. Its exact role in

the critically ill remains to be clarified; however, par-

ticular concern has been raised with feeds that contain

a high arginine content.164 As a precursor of NO,

arginine supplemented feeds may result in an uncoor-

dinated vasodilatation which might have harmful

effects in the critically ill. Further, NO may effect cel-

lular oxygen consumption and utilization. Regulation

of NO synthesis is thought to be important in the

maintenance of the gut mucosal barrier in the critic-

ally ill,144 with the result that overproduction of NO

may cause intestinal mucosal damage, resulting in

failure of the gut barrier function with ensuing bacter-

ial translocation. Bertolini et al. were able to show

that critically ill septic patients randomized to receive

high arginine immune-modulating feeds had a signifi-

cantly higher mortality.164

Vitamin A, with its essential roles in epithelial cell

integrity and immune function, has been shown to be

important in maintaining gut barrier function.165 Zinc,

a trace element and an important component in cell

membrane structure and function, serves as an anti-

oxidant and is important in regulating gene expression

and protein transcription and synthesis.130 It is essen-

tial to rapidly dividing cells such as those of the

immune system and of the gut epithelium166 and as

such may protect against the ingress of bacteria from

within the bowel lumen. Zinc supplements have been

shown to improve markers of intestinal permeability

in children with diarrhoeal diseases,167 but as previ-

ously stated, one remains uncertain of the significance

of intestinal permeability measurements as a surrogate

marker of gut barrier function.

Splanchnic blood flow, dopexamine, inotropes and
ischaemia-reperfusion injury

The gut is an organ that is exquisitely sensitive to

systemic cardiovascular and pulmonary distur-

bances.168, 169 The normal physiological response to

systemic hypoperfusion is the shunting of blood away

from the splanchnic circulation, towards more vital

organs, despite the fact that states of diminished cir-

culatory volume, systemic inflammation and sepsis

result in a significant increase in gut and hepatic

oxygen consumption.170 Oxygenation to the villi in

man is depending on a counter current exchange

mechanism such that oxygen saturation at the tip of

the villi is lower than that of arterial blood. This

compounds the normal physiological response to

hypoperfusion by rendering the villus very suscept-

ible to ischaemia-reperfusion damage. This is central

to the three-hit hypothesis leading to SIRS and

MODS as proposed by Deitch.15 Further, diminished

splanchnic blood flow as seen in hypovolaemic

shock, and bowel ischaemia, is associated with mu-

cosal disruption, increased intestinal permeability and

bacterial translocation, resulting in or perpetuating

septic complications and multiorgan failure.169 The

potential importance of the therapeutic manipulation

of splanchnic flow and its effect on outcome is illus-

trated in a number of recent human studies which

suggest that the use of the splanchnic vasodilator
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dopexamine is associated with a significant reduction

in post-operative mortality.168, 171 Further, studies

investigating ischaemia-reperfusion injury during

intestinal transplantation may clarify the pathophysi-

ological mechanisms which cause this injury. It

remains to be seen whether interventions shown to

prevent or attenuate ischaemia-reperfusion tissue

damage may also prevent bacterial translocation.

There are a number of ways to increase blood flow

to the gut and liver in the critically ill, including cor-

recting hypovolaemia and maintaining an adequate

cardiac output. Various inotropic agents, including

dopexamine, dobutamine, and dopamine, have vaso-

dilatory properties and may also increase splanchnic

blood flow, independent of their effects on cardiac

output and blood vessels. The evidence in this respect

is often conflicting,171, 172 probably reflecting the

presence of a number of confounding factors such as

adequacy of resuscitation, variations in prescribed dos-

age, and the simultaneous administration of other ino-

tropic agents. Further, different parts of the GIT may

show variations in drug response to identical doses of

the same inotropic agent.170, 173 This is further com-

pounded by the difficulty to directly assess splanchnic

perfusion in humans. The current consensus appears to

suggest that dopexamine increases splanchnic blood

flow and increases intramucosal pH in sepsis.173–177

Dopexamine may also have other beneficial effects on

the gut, not clearly elucidated at this time. These may

be mediated by direct anti-inflammatory proper-

ties168, 178, 179 or its effect of decreasing amplitude of

flow motion in ileal mucosal arterioles.180 Human

studies are needed to clarify the clinical significance

of these latter observations. Dobutamine increases

splanchnic blood flow after cardiopulmonary bypass

independent of cardiac output.181, 182 Dobutamine also

improve both splanchnic oxygenation and gastric in-

tramucosal pH in septic animals and in septic

patients.183, 184 Dopamine, on the contrary, increases

splanchnic blood flow in sepsis,185 which is mediated

by numerous vascular dopaminergic receptors found

throughout the GIT tract. Whether the beneficial

effects of dopexamine and other inotropes may be

attributed, at least in part, to a reduction in bacterial

translocation remains to be elucidated.

Post-epithelial and miscellaneous factors

Numerous other factors have been shown to influence

bacterial translocation in animals. Increased intra-

abdominal pressures may result in increased ingress of

luminal bacteria, such that measures to control acute

abdominal compartment syndrome may lead to a

decrease in translocation, and the eventual develop-

ment of multisystem organ failure.186 Melatonin has

been reported to protect against oxidative injury after

ischaemia-reperfusion, and exogenous injection has

been shown to decrease bacterial translocation in

rats.187 Similar reductions in murine bacterial translo-

cation were observed after administration of octreo-

tide188 and lactulose.189 Enteral feeds supplemented

with IgA have been reported to help maintain gut mu-

cosal integrity and villus height while decreasing the

in vitro transmucosal passage of bacteria.190, 191 These

findings were not observed with immunoglobulin G or

lactoferrin administration. Similarly, growth hormone,

insulin-like growth factor 1 (IGF-1) recombinant

human IGF-1, glucagon-like peptide 2, as well as epi-

dermal growth factor are known to promote enterocyte

proliferation,192, 193 reduce ileal mucosal apoptosis,194

attenuate cytotoxic damage to the intestinal epithe-

lium,195 decrease intestinal permeability,196, 197 and

diminish bacterial translocation192, 193, 195–199 in rats.

Their effects on bacterial translocation in humans are

unknown.

Intraoperative bowel manipulation has been shown

to adversely affect gut barrier function and increase

bacterial translocation in humans.200 It is advisable to

implement methods aimed at curtailing operative

times, bowel manipulation and indeed the need for

laparotomy in the critically ill, in an attempt to

decrease bacterial translocation.

Opiate sparing protocols for analgesia are known to

reduce nausea and vomiting, enhance transit times,

preserve intestinal migratory motor complexes201 as

well as attenuate post-operative gut dysfunction.

Because of this, it has been suggested that the use of

opiates may increase bacterial translocation.202 This

has been confirmed in rats.203, 204 Based on best cur-

rent evidence, it would seem wise to decrease the use

of opiates in the critically ill when suitable alternatives

are available.

CONCLUSION

There would seem to be little doubt that gut function

in general, and intestinal barrier function in particular,

are important determinants of outcome in critically ill

patients. Methodological problems in confirming

bacterial translocation, which is a direct measure of
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intestinal barrier function, has restricted investigations

to patients undergoing laparotomy, and as such there

is only limited data available relating to specific inter-

ventions that might preserve intestinal barrier function

or limit bacterial translocation. Based on the best cur-

rently available knowledge, glutamine supplementa-

tion, aggressive and targeted nutritional intervention,

maintaining good splanchnic flow whilst limiting

other inotropic support, the judicious use of antibiotics

and directed SGD regimes hold some promise of limit-

ing bacterial translocation. Future potential in decreas-

ing bacterial translocation and preserving intestinal

barrier function may lie in targeted immunomodula-

tion of GALT as well as other gut-directed therapies

aimed at attenuating gut failure and encouraging the

earlier return of normal gut function.
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